Kernels of Toeplitz operators and de Branges-Rovnyak spaces

Andrzej Sołtysiak

Adam Mickiewicz University (Poznań, Poland)

Let H^2 denote the standard Hardy space on the unit disk \mathbb{D} and let $\mathbb{T} = \partial \mathbb{D}$. For $\varphi \in L^{\infty}(\mathbb{T})$ the Toeplitz operator T_{φ} on H^2 is given by $T_{\varphi}f = P_+(\varphi f)$, where P_+ is the orthogonal projection of $L^2(\mathbb{T})$ onto H^2 . It is a consequence of Hitt's Theorem that ker $T_{\varphi} = fK_I$, where $K_I = H^2 \ominus IH^2$ is the model space corresponding to the inner function I such that I(0) = 0 and f is an outer function of unit H^2 norm that acts as an isometric multiplier from K_I onto fK_I .

The sufficient and necessary condition for the space fK_I to be the kernel of a Toeplitz operator was given by E. Hayashi (1990). In 1994 D. Sarason gave another proof of this condition based on de Branges-Rovnyak spaces theory. If $M = fK_I$ is a kernel of a Toeplitz operator, then we also have $M = \ker T_{If}$. In the talk we consider the case when $fK_I \subsetneq \ker T_{If}$ and describe the space $\ker T_{If} \ominus fK_I$ in the case when this space is finite dimensional. We use Sarason's approach and the structure of de Branges-Rovnyak spaces generated by nonextreme functions.

The talk is mainly based on the papers:

- Nowak, M. T., Sobolewski, P., Sołtysiak, A., Wołoszkiewicz-Cyll, M., On kernels of Toeplitz operators, Anal. Math. Phys. 10 (2020), no. 4;
- Nowak, M. T., Sobolewski, P., Sołtysiak, A. The orthogonal complement of *M(a)* in *H(b)*, Studia Math. 260 (2021), no. 3.